
Penguin / Pro SDK Manual
Version 1.2.21

Software and manual Copyright 2001-2003
Pixera Corporation
All rights reserved.

Pixera Corporation reserves all rights to trademarks, patents, and
copyrights involved in Pixera Corporation software, documentation,
images, and other products and collateral.

No part of this document may be reproduced or transmitted in any form or
by any means, electronic or mechanical for any purpose, without the
express permission of Pixera Corporation

Information in this document is subject to change without notice.

Introduction and Overview
Version 1.2.21 of the Pixera Penguin / Pro Software Developer’s Kit
(SDK) lets you develop your own Windows WDM (Windows Driver Model) based
application to control the Pixera Penguin / Pro Monochrome or Color
cameras, capturing images singly and displayed as a motion sequence, for
your own custom image capture, viewfinder, and processing requirements.
You should already have the Pixera Penguin / Pro system, including the
Pixera (monochrome or color) camera, PCI card interface adapter, and
software applications. You should also have your own C++ language
Microsoft Windows Studio or Visual C++ development tools.
You can create your application from scratch or modify the fully
functional sample application, PixTestApp, provided in this kit. The
PixTestApp sample application exercises most of the API calls and
demonstrates the implementation of a viewfinder application.
The PixTestApp.exe Windows 98/2000/ME application is a compilation of
the PixTestApp.cpp source code included in this kit, which lets you run
the sample application immediately.
The Dynamic Link Library (.dll) files provided with the Pixera Penguin /
Pro Software Development Kit, PixSDK.dll, provide low-level camera
control, image processing, and image retrieval functions.
The accompanying header files provide the application interface to the
PixSDK.dll file, which your application should load in its
initialization routines.

Pixera Penguin / Pro SDK Version 1.2.21 Inventory
The Pixera Penguin / Pro Software Developer’s Kit (SDK) comes with this
user guide and a development kit CD.
The development CD (and the downloadable version) includes the following
files:
PixSDK.dll Pixera Penguin / Pro library module for Windows 98/2000/ME
PixSDK.h Pixera Penguin / Pro header file
PixTestApp project Sample Windows Visual C++ Version 6.0 Pixera
Penguin / Pro application source code.
PixTestApp.exe Windows 98/2000/ME sample Pixera Camera Control
application executable
ReadMe.txt A text file identifying the exact version number of this SDK
PixSDKDocs.txt A text file containing the text of this document
PixSDKDocs.doc A Microsoft Word 97 file of this document

Installing the Pixera Penguin / Pro SDK
You should have the Pixera Penguin / Pro System, which provides the
Pixera camera, PCI bus interface adapter, and software applications as
well as a Microsoft C language or C++ language compiler for Windows
98/2000/ME along with standard development tools such as an editor and
debugger.
Installing the Pixera Camera hardware
First install the Pixera Camera hardware on your system, then install
the appropriate Pixera device driver from the corresponding operating

system folder on the Penguin / Pro applications CD, under the device
drivers folder. .
Installing the PCI bus interface adapter
Turn off your computer. Pixera Corporation technical support recommends
that you remove the power cable to be sure power remains off.
Open the computer case so you can see the PCI bus slots. (Most PCI
computers also support ISA or EISA slots as well: be sure to match your
Pixera Camera PCI bus interface adapter to the PCI slots.)
Install the Pixera Camera PCI bus interface adapter in an available
slot. Be sure the PCI bus interface adapter is correctly aligned and
tightened down.
Close up the computer case. Use the supplied cable to connect the
Pixera Camera to the bus interface adapter.
Never unplug the camera cable from either the camera side or the PCI
card side while the PC is powered as this may damage the camera.
You should be ready to power on, boot up Windows 98/2000/ME, and install
the corresponding Penguin / Pro camera device driver.

Installing the Pixera Penguin / Pro device driver
When your Pixera Camera hardware is installed, turn your computer’s
power on, boot up Windows 98/2000/ME.
Windows 98, 2000 or ME will ask you for the Vendor’s device driver.
Select the appropriate .inf file from the corresponding operating system
folder under Device Drivers on the application software CD that comes
with the Penguin camera.
Installing the Pixera Penguin / Pro SDK software
Create a Pixera Penguin / Pro development directory on the computer that
will host your development work.
Copy the SDK files and folders to the Pixera Penguin / Pro development
directory.
When you’ve got the Pixera Penguin / Pro SDK installed, you’re ready to
run the PixTestApp.exe program or start developing your own application.
To open the PixTestApp project under Visuall C++ Version 6.0 or later,
first make sure that Visual C++ 6.0 is installed on the computer, then
open the PixTestApp.dsw file.

Using the Pixera Penguin / Pro SDK
Use your Visual C or C++ development tools to create your Pixera Penguin
/ Pro application.
Trying the PixTestApp.exe program
If you wish, you can run the PixTestApp.exe application to get an idea
of how a rudimentary Pixera Penguin / Pro application works. When you
run the PixTestApp.exe program, it will load the dll and WDM files
automatically and as you click appropriate buttons. (Be sure you have
installed and connected the Pixera Camera hardware before you turn your
computer’s power on.) In order for the PixSDK dll library to function
correctly, you must also provide the 6 data files (with .dat extensions)
in the same folder as the executable. Try out the buttons to start up
the Pixera Camera, view and capture an image.
There are a row of lettered buttons to the right of the toolbar of the
PixTestApp test application. These are currently assigned to function
calls testing various focus finder and levels adjustment functions.
Please feel free to modify the button handling code in the file
PixTestAppView.cpp file in order to customize and test various SDK
functionality.
How things work together
Your application will provide the user-interface to the Pixera Camera
software and hardware system. Its buttons and menus should correspond
to features in the PixSDK.dll module.
Refer to the reference section in this guide as well as the PixSDK.h to
write your own functions that call standard C language API functions in
the PixSDK.dll module.
The PixSDK.dll module dynamically loads and unloads the Penguin.sys WDM
device driver through CreateFile() calls. To view and capture images,
the PixSDK.dll module makes calls to the PixSDK.dll pre-capture
processing module which formats the memory image returned from the
Penguin.sys device driver.

Application Development
The PixTestApp project was developed using the Microsoft Foundation
Class (MFC) libraries and methodology. For more information on MFC
development please refer to the appropriate Microsoft Visual C++
documentation. You do not need to program in C++ or utilize MFC in
order to take advantage of the PixSDK library, but it may be necessary
in order to understand the functionality of the PixTestApp application
source code.

PixTestAppView.cpp contains functions which respond to user interface
events, or make calls into the PixSDK library to prepare for these
events:

CPixTestAppView() constructor demonsrates loading the driver and
checking if the camera is connected.

~CPixTestAppView() destructor demonstrates stopping the motion preview,
disengaging the camera, and unloading the driver.

OnDraw(), in the sample application, and CAM_MIA_StartDraw(), in the
SDK, are only included for legacy purposes and are no longer recommended
to use
CAM_MIA_StartAutoDraw() will now automatically draw the live preview
image into the current window using "Video for Windows."

OnPreview() starts the Viewfinder motion preview, and it illustrates how
to call CAM_MIA_StartAutoDraw() by passing a global image DIB handle and
the device context for drawing the image into the current window, which
is obtained using GetDC()->GetSafeHdc(). When the application window
was created in the application's PreCreateWindow() function it included
extra window space for a 696 x 520 preview image. Once
CAM_MIA_StartAutoDraw() is called it will automatically draw the live
preview image into the window at the fastest possible frame rate. No
other functions are required.

Setting Viewfinder resolution is demonstrated with the functions:
OnViewfinderZoom(), OnViewfinderFast(), and OnViewfinderFull()

Capturing a still image: OnCapture() and OnCaptureDone()

Capturing a viewfinder preview image from the motion sequence image
stream: OnPreviewCapture() and OnPreviewCaptureDone().

What's New in Versions 1.2.18 through 1.2.21

Fixed problem of CAM_BB_SetFactors() interacting with auto white balance
mode.

Deactivate color transform from default behavior for Brightfield mode

Fix monochrome still capture and motion image brightness problems.

What's New in Versions 1.2.12 through 1.2.17

Fixed problem of shifted image in captured 8-bit monochrome DIB image.

Fixed problem of single bright image which occured when starting MIA

Fixed problem where first image captured after MIA was black.

Manual exposure mode is now set by default after calling
CAM_SIA_PrepXXX().

Maximum framerate is now possible when calling the sequence
CAM_SIA_CaptureExpose() and CAM_SIA_CaptureProcess() repeatedly.

MIA mode may be activated between calls to CAM_SIA_PrepXXXX() and
CAM_SIA_CaptureExpose() without side effects.

What's New in Versions 1.2.9 through 1.2.11

Added functions:

CAM_SIA_Prep8Bit(HANDLE)
CAM_SIA_Prep16Bit(HANDLE)
CAM_SIA_Prep24Bit(HANDLE)
CAM_SIA_Prep48Bit(HANDLE)
CAM_SIA_CaptureExpose()
CAM_SIA_CaptureProcess()

This allows image capturing to be setup prior to the actual expose phase
of the capture, allowing the light source to be turned on and off
immediately before and after the call to CAM_SIA_CaptureExpose().
CAM_SIA_CaptureExpose() and CAM_SIA_CaptureProcess() sequencess may be
called any number of times after CAM_SIA_PrepXXXXX() in order to
minimize processing and maximize the framerate.

CAM_BB_SetFactors() now functions correctly, even when preview mode is
not active.

Bug fixed in processing of monochrome camera 1392 x 1040 resolution
capture allowing sharpest image possible.

Captured image now incorporates the white balance settings, even if the
white balance factors were not set in preview mode.

What's New in Version 1.2.8

Using drawing functions other than those in Video for Windows library to
eliminate crashing problems in CAM_MIA_StartAutoDraw().

Include a new SDK function, CAM_FF_GetFineValue(), which returns a focus
finder value between 0 and 1000, providing more sensitivity than the
function CAM_FF_GetEvalValue().

What's New in Versions 1.2.2 through 1.2.7

Handles are locked down to reduce access violation errors, particularly
in memory intensive applications.

Still captures can now be performed even when MIA (motion preview) is
not active.

Problem is fixed where calling CAM_MIA_Start() after
CAM_MIA_StartAutoDraw() and CAM_MIA_Stop() prevented the CAM_MIA
callback functions from working properly.

Fixed a problem where CAM_MIA_Stop() accessed a heap block which had
been previously freed.

Fixed CAM_BB_GetFactors() and CAM_BB_SetFactors() so that they work
properly.

Fixed a problem so that CAM_SIA_GetResolution() returns proper values
for VGA mode.

What's New in Version 1.2.1

At the time CAM_Init() is called, the current working directory is saved
and used when accessing the .dat files from that point on.

What's New in Version 1.2.0

CAM_Init(colorMode) and CAM_IP_SetColor(colorMode) SDK functions now
take a single argument which specifies one of three color modes
depending on the camera being used, or whether color images are desired:

kMonochromeCam - specifies that monochrome images are to be captured or
displayed from the monochrome camera.

kColorCamMono - specifies that monochrome images are to be captured or
displayed from the color camera.

kColorCamColor - specifies that color images are to be captured or
displayed from the color camera.

There are also two new capture functions which are only useful with the
monochrome camera:

CAM_SIA_Start8Bit() and CAM_SIA_Start16Bit() will capture 8-bit and 16-
bit bitmaps respectively, but only in kMonochromeCam mode.

When an 8-bit bitmap is passed to CAM_IMG_Save(), as in the the test
application, then it will be saved as an 8-bit monochrome BMP or TIFF
image, whichever is specified. When a 16-bit bitmap is passed to
CAM_IMG_Save() then it can be saved as a 16-bit TIFF image.

Pixera Penguin / Pro SDK Reference
The following functions comprise the useful C language API calls an
application should use to control the Pixera Penguin / Pro Camera and

calls are presented in related groups. capture images. Function
Load and set up driver
CAM_LoadDriver
CAM_UnloadDriver
CAM_IsDriverLoaded
Get Software Versions
CAM_GetVersionOfDriver
CAM_GetVersion
Set up camera condition
CAM_Init
CAM_Exit
CAM_IsConnected
Automatic exposure and photometry
CAM_AE_SetSpotSize

CAM_AE_GetSpotSize
CAM_AE_SetSpotPosition
CAM_AE_GetSpotPosition
CAM_AE_Start
CAM_AE_Stop
CAM_AE_Lock
CAM_AE_GetMode
CAM_AE_GetStatus
CAM_AE_SetAdjust
CAM_AE_GetAdjust
CAM_AE_SetSpotColor
CAM_AE_GetSpotColor
CAM_AE_SetMicroMode
CAM_AE_GetMicroMode
Color Balance
CAM_WB_SetMode
CAM_WB_GetMode
CAM_WB_SetRegion
CAM_WB_GetRegion
CAM_WB_SetFactors
CAM_WB_GetFactors
CAM_WB_CalibrateFactors
CAM_BB_Start
CAM_BB_Stop
CAM_BB_SetRegion
CAM_BB_GetRegion
CAM_BB_GetFactors
CAM_BB_CalibrateFactors
Exposure Condition
CAM_EXP_SetSpeed
CAM_EXP_GetSpeed
CAM_EXP_SetSensitivity
CAM_EXP_GetSensiti
Image Processing

vity

CAM_IP_SetLuminanceLevels
CAM_IP_GetLuminanceLevels
CAM_IP_SetOrientation
CAM_IP_GetOrientation
CAM_IP_ColorCapture
CAM_IP_IsColor
Focus Finder

Capture

CAM_FF_Start
CAM_FF_Stop
CAM_FF_IsRunning
CAM_FF_GetEvalValue
CAM_FF_GetFineValue
CAM_FF_Reset
CAM_FF_SetRegion
CAM_FF_GetRegion
Motion Observation and Acquisition
CAM_MIA_SetResolution
CAM_MIA_GetResolution
CAM_MIA_GetPixelSize
CAM_MIA_StartAutoDraw
CAM_MIA_Start [obsolete]
CAM_MIA_Stop
CAM_MIA_IsRunning
CAM_MIA_Capture
CAM_MIA_SetHDC

Capture and save a Still Image
CAM_SIA_SetResolution
CAM_SIA_GetResolution
CAM_SIA_GetPixelSize
CAM_SIA_SetAccumulateTimes
CAM_SIA_GetAccumulateTimes
CAM_SIA_SetAccumulateMode
CAM_SIA_GetAccumulateMode
CAM_SIA_Start8Bit
CAM_SIA_Start16Bit
CAM_SIA_Start24Bit
CAM_SIA_Start48Bit
CAM_SIA_IsRunning
CAM_IMG_Save

CAM_LoadDriver Load and set up driver
BOOL CAM_LoadDriver (void)

Under Windows 98/2000/ME, dynamically loads the WDM driver.

Parameters
 None

Return Values
 TRUE if successful
 FALSE otherwise

CAM_UnloadDriver Unload device driver
vod CAM_UnloadDriver (void)

Under Windows 98/2000/ME, dynamically unloads the WDM driver.

Parameters
 None

CAM_IsDriverLoaded Check if driver loaded
BOOL CAM_IsDriverLoaded (void)

Checks whether the device driver has been already loaded.

Parameters
 None

Return Values
 TRUE Device driver has been already loaded.
 FALSE Device driver is not loaded yet.

CAM_GetVersionOfDriver Get current driver version
void CAM_GetVersionOfDriver(short* pMajorVersionOut, short*
pMinorVersion, short * pBugfixVersionOut)

Returns the major, minor and bug fix version numbers of the camera
driver

Parameters

OUT pMajorVersionOut - Major version release
OUT pMinorVersionOut - Minor version upgrade
OUT pBugfixVersionOut - Bug fix version upgrade.

Return Values
 None

CAM_GetVersion Get current SDK version
void CAM_GetVersionOfDriver(short* pMajorVersionOut, short*
pMinorVersionOut, short * pBugfixVersionOut)

Returns the major, minor and bug fix version numbers of the SDK DLL

Parameters
OUT pMajorVersionOut - Major version release
OUT pMinorVersionOut - Minor version upgrade
OUT pBugfixVersionOut - Bug fix version upgrade.

Return Values
 None

CAM_Init Initialize camera
void CAM_Init (ColorModeEx theColorMode)

Initializes the camera.

Parameters
IN theColorMode - specifies the color mode and type of camera used

 It can be any one of the following values.
 Value Meaning

 kMonochromeCam Monochrome camera
 kColorCamMono Color camera in monochrome mode
 kColorCamColor Color camera in color mode

Return Values
 None

CAM_Exit Disengage camera
void CAM_Exit (void)

Ends use of the camera.

Parameters
 None

Return Values
None.

CAM_IsConnected Check if camera connected
BOOL CAM_IsConnected (void)

Checks the connection between the camera and the cable.

Parameters
 None

Return Values
 TRUE Camera is connected to the camera cable.
 FALSE Camera is disconnected to the camera cable.

CAM_AE_SetSpotSize Set AE spot params
void CAM_AE_SetSpotSize(bool bDrawingOnOff, PxRectEx *rc,
UCHAR ucRed, UCHAR ucBlue, UCHAR ucGreen);

Sets the photometry region.

Parameters

IN bDrawingOnOff - Specifies the flag which specifies if SDK draws
 the photometry region.
IN rc - Specifies the photometry region.
IN ucRed - Specifies the Red value of the frame color for the
 photometry region.
IN ucBlue - Specifies the Blue value of the frame color for the
 photometry region

IN ucGreen - Specifies the Green value of the frame color for the
 photometry region

Return Values
 None

CAM_AE_GetSpotSize Get AE spot params
void CAM_AE_GetSpotSize(bool *pbDrawingOnOff, PxRectEx *pRC,
 UCHAR *pRed, UCHAR *pGreen, UCHAR *pBlue);

Gets the area of photometry.

Parameters

OUT pbDrawingOnOff - Specify a buffer retrieving the flag which
 specifies if the photometry region is drawn.
OUT pRC - Specify a buffer retrieving the photometry region.

OUT pRed - Specify a buffer retrieving Red value of the frame color
 of photometry region.

OUT pGreen - Specify a buffer retrieving Green value of the frame
 color of photometry region.

OUT pBlue - Specify a buffer retrieving Red value of the frame
 color of photometry region..

Return Values
 None.

Remarks
 This function retrieves the conditions set by CAM_AE_SetSpotSize
() function.

CAM_AE_SetSpotPosition Set AE spot position
void CAM_AE_SetSpotPosition (bool bDrawingOnOff, PxRectEx *rc,
 UCHAR ucRed, UCHAR ucBlue, UCHAR ucGreen);

Sazme as CAM_AE_SetSpotSize()

CAM_AE_GetSpotPosition Get AE spot position
void CAM_AE_GetSpotPosition (bool *pbDrawingOnOff, PxRectEx *pRC,
 UCHAR *pRed, UCHAR *pGreen, UCHAR *pBlue);

Same as CAM_AE_GetSpotSize()

CAM_AE_Start Start AE processing
void CAM_AE_Start (void)

Starts the auto exposure control.

Parameters
 None

Return Values

None.

CAM_AE_Stop Stop AE processing
void CAM_AE_Stop (void)

Stops the automatic exposure control.

Parameters
 None

Return Values

 None.

Remarks
 When this function calls, stops the automatic exposure control and
sets the last computed exposure time as manual exposure time.

CAM_AE_Lock Lock current AE setting
void CAM_AE_Lock (bool bLock)

Locks or unlocks the automatic exposure control.

Parameters
IN bLock Specifies the lock control of the automatic exposure. It can
be any one of the following values.
Value Meaning

TRUE Locks the auto exposure control by current conditions.
FALSE Releases the AE-lock, and restarts automatic exposure
 control.

Return Values
 None

CAM_AE_GetMode Get current AE mode
AutoExposureModeEx CAM_AE_GetMode(void)

Gets the mode of automatic exposure control.

Parameters
 None

Return Values
 The return value is a mode of automatic exposure control.
 It can be any one of the following values.
 Value Meaning

 kAEUnlocked Automatic exposure control is active.
 kAELocked Locked the automatic exposure control.

 kManualExposure Automatic exposure control is stopped. (manual
 exposure control)

CAM_AE_GetStatus Get current AE status
AutoExposureStatusEx CAM_AE_GetStatus();

Gets status of the automatic exposure control.

Parameters
 None

Return Values
 The return value is a status of the automatic exposure control.
 It can be any one of the following values.
 Value Meaning

kAENotFunctional Automatic exposure control doesn’t work.
KAEUnderExposed Computed exposure time is shorter than appropriate
 exposure time. (underexposure)
KAEGoodExposure Computed exposure time is appropriate.
KAEOverExposed Computed exposure time is longer than appropriate
 exposure time. (overexposure)

CAM_AE_SetAdjust Set AE compensation
BOOL CAM_AE_SetAdjust (int nCoefficient)

Sets the compensation coefficient of automatic exposure control.
nCoefficient parameter means 2nCoefficient / 3.

Parameters
IN nCoefficient Specifies the compensation coefficient of
automatic exposure control.
 It takes from -6 to +6.

Return Values

 TRUE if successful
 FALSE otherwise.

CAM_AE_GetAdjust Get AE adjust compensation
int CAM_AE_GetAdjust (void)

Gets the compensation coefficient of automatic exposure control.

Parameters
 None

Return Values
 The return value is the compensation coefficient of automatic
exposure control.

Remarks
 This function retrieves the conditions set by CAM_AE_SetAdjust ()
function.

CAM_AE_SetSpotColor Set AE spot drawing characteristics
void CAM_AE_SetSpotColor (bool bDrawingOnOff, PxRectEx *pRectEx,
 UCHAR red, UCHAR green, UCHAR blue)

Set the drawing characteristics of the AE spot rectangle.

Parameters
IN bDrawingOnOff - true if AE is visible, false if not visible
IN pRectEx - the rectangle specifying the outline of the spot
 indicator
IN red, green, blue - specify the color of the rectangle, with
 values between 0 and 255

Return Values
 None

CAM_AE_GetSpotColor Get AE spot drawing characteristics
void CAM_AE_GetSpotColor (bool bDrawingOnOff, PxRectEx *pRectEx,
 UCHAR red, UCHAR green, UCHAR blue)

Get the drawing characteristics of the AE spot rectangle.

Parameters
OUT bDrawingOnOff - true if AE is visible, false if not visible
OUT pRectEx - the rectangle specifying the outline of the spot
 indicator
OUT red, green, blue - specify the color of the rectangle, with
 values between 0 and 255

Return Values
 None

CAM_AE_SetMicroMode Set AE microsope mode
void CAM_AE_SetMicroMode (MicroModeEx theMode)
Set the brightfield or flourescence microscope mode for calculating AE

Parameters
IN theMode - specifies the Microscope mode for calculating auto
exposure

 It can be any one of the following values.
 Value Meaning

 kBF Brightfield microscope illumination
 kFL Flourescence microscope illumination
Return Values
 None

CAM_AE_GetMicroMode Get AE microsope mode
void CAM_AE_GetMicroMode (MicroModeEx *theMode)
Get the brightfield or flourescence microscope mode for calculating AE

Parameters

OUT theMode - specifies the Microscope mode for calculating auto
 exposure

 It can be any one of the following values.
 Value Meaning

 kBF Brightfield microscope illumination
 kFL Flourescence microscope illumination
Return Values
 None

CAM_WB_SetMode Set WB mode
void CAM_WB_SetMode (WhiteBalanceModeEx Mode)

Sets the measurement mode of white balance.

Parameters
IN Mode Specifies the measurement mode of white balance.
 It can be any one of the following values.
 Value Meaning

 CAM_WB_AUTO Measures white balance always.
 CAM_WB_1TIME Measures white balance one time.

CAM_WB_GetMode Get WB mode
WhiteBalanceModeEx CAM_WB_GetMode (void)

Gets the measurement mode of white balance.

Parameters
 None

Return Values
 The return value is a measurement mode of white balance.
 See CAM_WB_SetMode().

Remarks
 This function retrieves the conditions set by CAM_WB_SetMode ()
function.

CAM_WB_SetRegion Set WB region params
void CAM_WB_SetRegion (bool bDrawingOnOff, PxRectEx *lpRect,
 UCHAR ucRed, UCHAR ucGreen, UCHAR ucBlue)

Sets the measurement region of white balance.
This region is only effective when the measurement mode is CAM_WB_1TIME.

Parameters
IN bDrawingOnOff - Specifies the flag specifying if SDK draws the WB
 region.

IN lpRect - Points to the PxRectEx structure that contains the
 measurement region of white balance. The position is
 specified on the movie image.
IN ucRed - Specifies the Red value of the frame for the white
 balance region.
IN ucBlue - Specifies the Blue value of the frame for the white
 balance region.
IN ucGreen - Specifies the Green value of the frame for the white
 balance region.

CAM_WB_GetRegion Get WB region params
void CAM_WB_GetRegion (bool *pbDrawingOnOff, PxRectEx *lpRect,
 UCHAR* pRed, UCHAR* pGreen, UCHAR* pBlue)

Gets the measurement region of white balance.

Parameters
OUT pbDrawingOnOff - Retrieves the flag which specifies if the
 white balance region is drawn.
OUT lpRect Points to the buffer that receives the
 measurement region of white balance.
OUT pRed - Point to the valuable which retrieves the Red value
 of the frame color of white balance region.
OUT pGreen - Point to the valuable which retrieves the Green
 value of the frame color of white balance region.
OUT pBlue - Point to the valuable which retrieves the Blue
 value of the frame color of white balance region.

Return Values
 None

Remarks
 This function retrieves the conditions set by CAM_WB_SetRegion ()
function.

CAM_WB_SetFactors Set WB factors
void CAM_WB_SetFactors (doube dRed, double dGreen, double dBlue)

Sets the white balance factors.

Parameters
IN dRed Specifies the red factor. It takes values from 0.0 to 2.0.
IN dGreen Specifies the green factor. It takes values from 0.0 to 2.0.
IN dBlue Specifies the blue factor. It takes values from 0.0 to 2.0.

Return Values
 None

CAM_WB_GetFactors Get WB factors
void CAM_WB_GetFactors (doube lpdRed, double lpdGreen, double lpdBlue)

Gets the current white balance factors.

Parameters
OUT lpdRed Points to the buffer that receives the red factor of white balance.

OUT lpdGreen Points to the buffer that receives the green factor of white balance.
OUT lpdBlue Points to the buffer that receives the blue factor of white balance.

Return Values
 None

CAM_WB_CalibrateFactors Calibrate WB
void CAM_WB_CalibrateFactors(void)

Measure the white balance, and set the white balance factors

Parameter
 None
Return value
 None

Remarks
 This function cannot be used in automatic white balance mode.

CAM_BB_Start Start black balance processing
void CAM_BB_Start(void)

Start black balance mode processing.
Parameters
 None.

Return Values
 None

CAM_BB_Stop Stop black balance processing
void CAM_BB_Start(void)

Stop black balance mode processing.
Parameters
 None.

Return Values
 None

CAM_BB_SetRegion Set BB region params
void CAM_BB_SetRegion(bool bDrawingOnOff, PxRectEx* lpRect,
 UCHAR ucRed, UCHAR ucGreen, UCHAR ucBlue)

Sets the measurement region of black balance.

Parameters
IN bDrawingOnOff - Specifies the flag which specifies if SDK draws
 the black balance region.
IN lpRect Points to the PxRectEx structure that contains the
 measurement region of black balance. The position is
 specified on the movie image.

IN ucRed - Specifies the Red value of the frame of the black balance
 region.
IN ucBlue - Specifies the Blue value of the frame of the black
 balance region.
IN ucGreen - Specifies the Green value of the frame of the black
 balance region.

Return Values
 None

CAM_BB_GetRegion Get BB region params
void CAM_BB_GetRegion(bool *pDrawingOnOff, PxRectEx *pRC,
 UCHAR *pucRed, UCHAR *pucGreen, UCHAR *pucBlue);

Gets the measurement region of black balance.
Parameters
OUT bDrawingOnOff - Specifies the buffer retrieving the flag if the
 black balance region is drawn.
OUT lpRect Points to the buffer that receives the measurement
 region of black balance.
OUT ucRed - Specify a buffer retrieving the Red value of the frame
 for the black balance region.
OUT ucBlue - Specify a buffer retrieving the Blue value of the frame
 for the black balance region.
OUT ucGreen - Specifies a buffer retrieving the Green value of the
 frame for the black balance region.

Return Values
 None

Remarks
 This function retrieves the conditions set by CAM_BB_SetRegion ()
function.

CAM_BB_SetFactors Set BB factors
void CAM_BB_SetFactors (double lpnRed, double lpnGreen, double
lpnBlue)

Sets the black balance factors.

Parameters
IN lpnRed Red channel black factor level
IN lpnGreen Green channel black factor level
IN lpnBlue Blue channel black factor level

Return Values
 None
Remarks
 This function is used to set black level factors manually.

CAM_BB_GetFactors Get BB factors
void CAM_BB_GetFactors (double *lpnRed, double *lpnGreen, double
*lpnBlue)

Gets the black balance factors.

Parameters
OUT lpnRed Not used in monochrome SDK
OUT lpnGreen Points to the buffer that receives the monochrome
 factor of black
 balance.
OUT lpnBlue Not used in monocrhome SDK.

Return Values
 None
Remarks
 This function is used to retrieve the black level factors.

CAM_BB_CalibrateFactors Calibrate BB factors
void CAM_BB_CalibrateFactors (void)

Measure the black balance, and sets the black balance factors.
Parameters
 None

Return Value
 None

CAM_EXP_SetSpeed Set manual exposure
BOOL CAM_EXP_SetSpeed (double dExpSpeed)

Sets the manual exposure time to acquire still-image.
Exposure time is specified by the following formulas.
 Exposure time = nExpSpeed / 1,000 [sec]
 nExpSpeed

Parameters
IN dExpSpeed Specifies the exposure time to acquire still-image. It
takes from 0.1 to 1,000.

Return Values
 None

Remarks
 This function can be used only in manual exposure mode.

CAM_EXP_GetSpeed Get manual exposure
void CAM_EXP_GetSpeed (double *lpdExpSpeed)

Gets exposure time, for still-image and preview image.

Parameters
OUT lpdExpSpeed Points to the buffer that receives the exposure time.

Return Values
 None

CAM_EXP_SetSensitivity Set exposure sensitivity
BOOL CAM_EXP_SetSensitivity (int nISO)

Sets the ISO speed (sensitivity) to acquire still-image.

Parameters
 nISO(IN) Specifies the ISO speed (sensitivity).

Return Values

 TRUE - if successful
 FALSE -otherwise.

Remarks
 This function can not be used in AE-lock mode.

CAM_EXP_GetSensitivity Get exposure sensitivity
void CAM_EXP_GetSensitivity (int *lpnExpISO)

Gets ISO speed (sensitivity).

Parameters
OUT lpnExpISO Points to the buffer that receives the ISO
 sensitivity.

Return Values
 None

CAM_IP_SetLuminanceLevels Set luminance table parameters
void CAM_IP_SetLuminanceLevels(LevelAdjEx *theLevels)

Set LevelAdjEx parameters for a specified color channel.

Parameters
IN theLevels Points to the LevelAdjEx structure that specifies
 parameters for the level adjustment table parameters.
 LevelAdjEx structure has the following form.

 struct LevelAdjEx {
 IN ChannelEx nChannel, can be any of the following values:
 Value Meaning
 --

 kLuminanceChannel, overall luminance of monochrome channel
 kRedChannel, affects the red color channel,
 (not useful in monochrome camera mode)
 kGreenChannel, affects the green color channel,
 (not useful in monochrome camera mode)
 kBlueChannel affects the blue color channel,
 (not useful in monochrome camera mode)

 IN int nInShadow, shadow level between 0 and 255
 IN int nInHighlight,highlight level between 0 and 255
 IN double nInGamma, gamma value of curve
 IN int nOutShadow, not currently used,
 IN int nOutHighlight, not currently used.
 };

Return Values
 None

CAM_IP_GetLuminanceLevels Get luminance table parameters
void CAM_IP_GetLuminanceLevels(LevelAdjEx *theLevels)

Get LevelAdjEx parameters for a specified color channel.

Parameters
IN theLevels Points to the LevelAdjEx structure that specifies
 parameters for the level adjustment table parameters.

LevelAdjEx structure has the following form.

 struct LevelAdjEx {
 IN ChannelEx nChannel, can be any of the following values:
 Value Meaning
 --

 kLuminanceChannel,values for the overall monochrome
 luminance channel
 kRedChannel, red channel level
 (not useful in monochrome camera mode)
 kGreenChannel, green channel level
 (not useful in monochrome camera mode)

 kBlueChannel blue channel level
 (not useful in monochrome camera mode)
 --

 OUT int nInShadow, shadow level between 0 and 255
 OUT int nInHighlight,highlight level between 0 and 255
 OUT double nInGamma, gamma value of curve
 int nOutShadow, not currently used,
 int nOutHighlight, not currently used.
 };

Return Values
 None

CAM_IP_SetOrientation Set image orientation
void CAM_IP_SetOrientation(OrientationEx theOrientation)

Specifies motion and still image orientation transformation, if any.

Parameters
IN theOrientation may be one of the following values:

Value Meaning ------------------------------

kNoTransform, no image orientation transformation
kFlipHorizontal, flip motion and still image horizontally
kFlipVertical,, flip motion and still image vertically

kRotate180 rotate motion and still images 180 degrees
 --

Return Values
 None

CAM_IP_GetOrientation Get image orientation
OrientationEx CAM_IP_GetOrientation(void)

Returns motion and still image orientation transformation mode.

Parameters
 None

Return Values
Of type OrientationEx, may be one of the following values:

Value Meaning ------------------------------

kNoTransform, no image orientation transformation
kFlipHorizontal, flip motion and still image horizontally
kFlipVertical,, flip motion and still image vertically
kRotate180 rotate motion and still images 180 degrees
 --

CAM_IP_ColorCapture Set color capture mode
void CAM_IP_ColorCapture(ColorModeEx theColorMode)

Sets color motion display and still capture mode for either full color
or grayscale, or for monochrome camera.

Parameters
IN theColorMode - specifies the color mode and type of camera used

 It can be any one of the following values.
 Value Meaning

 kMonochromeCam Monochrome camera
 kColorCamMono Color camera in monochrome mode
 kColorCamColor Color camera in color mode

Return Values
 None

CAM_IP_IsColorCapture Get color capture mode
ColorModeEx CAM_IP_IsColorCapture(void)

Get color motion display and still capture mode: either full color or
grayscale, or monochrome camera.

Parameters
 None

Return values
 It can be any one of the following values.
 Value Meaning

 kMonochromeCam Monochrome camera
 kColorCamMono Color camera in monochrome mode
 kColorCamColor Color camera in color mode

CAM_FF_Start Start focus finder
void CAM_FF_Start(void)

Starts focus finder processing for motion imaging.
Parameters
 None

Return value
 None

Remarks
 This function resets the peak value of focus evaluation and
evaluates focus parameters for every motion image processed.

CAM_FF_Stop Stops focus finder
void CAM_FF_Start(void)

Stops focus finder processing for motion imaging.
Parameters
 None

Return value
 None

CAM_FF_IsRunning Get focus finder mode
bool CAM_FF_IsRunning(void)

Return status (true or false) of focus finder processing for motion
imaging.

Parameters
 None

Return value
 True if active, false if inactive

CAM_FF_GetEvalValue Get last evaluation values of focus finder
void CAM_FF_GetEvalValue(int *lpnCurrent, int *lpnMax)

Get current and peak focus values for motion image stream.

Parameters
 OUT lpnCurrnet points to the parameter that receives the
 current focus evaluaion value

 OUT lpnMax points to the parameter that receives the
 maximum focus value

Return value
 None

CAM_FF_Reset Resets the maximum value of focus evaulation
void CAM_FF_Start(void)

If focus finder is active, this function resets the maximum focus
evaluation value to the current value..

Parameters
 None

Return value
 None

CAM_FF_SetRegion Sets focus finder region
void CAM_FF_SetRegion(bool bDrawingOnOff, PxRectEx *pRect, UCHAR red,
 CHAR green, UCHAR blue)

Sets focus finder rectangle size and position, visibility, and color.

Parameters
IN bDrawingOnOff Determines if focus finder rectangle is
 visible or not
IN *pRect Pointer to rectangle determining focus
 finder rectangle dimensions
IN red, green, blue Determine focus finder rectangle color

Return value
 None

Remarks
 Focus finder value is determined within the specified rectangle of
the current motion image, whether rectangle is visible or not.

CAM_FF_GetRegion Gets focus finder region
void CAM_FF_GetRegion(bool *bDrawingOnOff, PxRectEx *pRect, UCHAR *red,
 CHAR *green, UCHAR *blue)

Gets current focus finder rectangle size and position, visibility, and
color.

Parameters
OUT *bDrawingOnOff Pointer to boolean specifying whether focus
 finder rectangle is visible
OUT *pRect Pointer to rectangle specifying focus
 finder rectangle dimensions
OUT *red, *green, *blue Pointer to byte values specifying focus
 finder rectangle color

Return value
 None

CAM_MIA_SetResolution Set motion image resolution
BOOL CAM_MIA_SetResolution (PreviewResolutionEx reso)

Sets the size of movie-image to acquire.

Parameters
IN reso Specifies the capture size of movie-image. It can be any
 one of the following values.

 Value Meaning

 kFast, FAST mode
 kFull, FULL mode
 kZoom ZOOM mode

Return Values

 TRUE if successful
 FALSE otherwise

CAM_MIA_GetResolution Get motion image resolution
void CAM_MIA_GetResolution (PreviewResolutionEx *pReso, PxSizeEx
 *pSize)

Gets the size of movie-image to acquire.

Parameters

OUT pReso Point to the buffer retrieving resolution.
OUT pSize Point to the buffer retrieving pixel size.

Return Values

 None.

Remarks
This function retrieves the conditions set by CAM_MIA_SetResolution ()
function.

CAM_MIA_GetPixelSize Get motion image pixel size
void CAM_MIA_GetPixelSize (double *lpdXSize, double *lpdYSize)

Gets the pixel size of movie-image. Unit of size is micron meter.

Parameters
OUT lpdXSize Points to the buffer that receives the pixel
 size of horizon.
OUT lpdYSize Points to the buffer that receives the pixel
 size of vertical.

Return Values
 None

CAM_MIA_Start [obsolete] Start motion image display
BOOL CAM_MIA_Start (HANDLE *phHandle)

Starts the sequence of movie-image acquisition.

Parameters

IN phHandle Point to the image handle retrieving preview
 images.

Return Values
 TRUE if successful
 FALSE otherwise

CAM_MIA_StartAutoDraw Start motion image display
BOOL CAM_MIA_StartAutoDraw (HANDLE *phHandle, HDC theHDC)

Starts the sequence of movie-image display.

Parameters

IN phHandle Point to the image handle retrieving preview
 images.
IN theHDC The current, safe drawing context

Return Values
 TRUE if successful
 FALSE otherwise
Remarks
 Each frame will automatically be redrawn directly to the screen
area above the window for the DC.

CAM_MIA_Stop Stop motion image display
void CAM_MIA_Stop (void)

Stops the sequence of movie-image acquisition.

Parameters
 None

Return Values

 None.

CAM_MIA_IsRunning Check if motion display is running
BOOL CAM_MIA_IsRunning (void)

Checks whether the sequence of movie-image acquisition is active.

Parameters
 None

Return Values
 TRUE Sequence of acquire the movie-image is running.
 FALSE Sequence of acquire the movie-image is stopped.

CAM_MIA_Capture Capture motion image
BOOL CAM_MIA_Capture (HANDLE *phImage)

Captures one frame of preview image.

Parameters
 phImage - pointer to the handle receiving the captured preview
 image.

Return Values
 TRUE - if successful
 FALSE - otherwise

CAM_MIA_SetHDC Sets motion image drawing context
bool CAM_MIA_SetHDC (HDC theHDC)

Sets the current HDC for the motion image drawing context

Parameters
 theHDC - drawing context usually retrieved by calling
 GetDC()->GetSafeHdc()

Return Values
 TRUE

CAM_SIA_SetResolution Set still capture resolution
void CAM_SIA_SetResolution (StillResolutionEx resolution)

Sets the size of still-image to acquire.

Parameters
IN resolution
Specifies the capture size of still-image. It can be any one of the
following values.

Value Meaning

kWarp, Warp
kSingle, Single
kVGA VGA

Return Values
 None

CAM_SIA_GetResolution Get still capture resolution
void CAM_SIA_GetResolution (StillResolutionEx* pReso, PxSizeEx* pSize)

Gets the size of still-image to acquire.

Parameters

pReso - Specify a buffer retrieving the resolution of still-capture
 image
pSize - Specify a buffer retrieving the pixel size of the still-capture
 image.

Return Values

 None.

Remarks
 This function retrieves the conditions set by
CAM_SIA_SetResolution () function.

CAM_SIA_GetPixelSize Get still capture pixel size
void CAM_SIA_GetPixelSize (double *lpdXSize, double *lpdYSize)

Gets the pixel size of still-image. Unit of size is micron meter.

Parameters
OUT lpdXSize Points to the buffer that receives the pixel
 size of horizon.
OUT lpdYSize Points to the buffer that receives the pixel
 size of vertical.

Return Values
 None

CAM_SIA_SetAccumulateTimes Set still capture
accumulation times
void CAM_SIA_SetAccumulateTimes (int nTimes)

Sets the accumulate times to acquire the still-image.

Parameters
IN nTimes Specifies the accumulate times to acquire the still-
 image.
 It takes from 1 (no accumulate) to 64.

Return Values
 None

CAM_SIA_GetAccumulateTimes Get still capture accumulation
times
void CAM_SIA_GetAccumulateTimes (int *nAccumulateTimes)

Gets the accumulate times to acquire the still-image.

Parameters

OUT The accumulate times to acquire an image.

Return Values

 None

Remarks
 This function retrieves the conditions set by
 CAM_SIA_SetAccumulateTimes () function.

CAM_SIA_SetAccumulateMode Set still capture accumulation
mode
void CAM_SIA_SetAccumulateMode (AccumulateMethodEx Mode)

Sets the accumulate method.

Parameters
IN Mode
Specifies the accumulate method. It can be any one of the following
values.

Value Meaning

kNotAccumulating
kAddition Adds the image specified number of times.
kAddStopOnOverflow Adds the image specified number of times.
 If detects a data of overflow, stops the
 accumulate.
kAverage Averages the image specified number of times.

Return Values
 None
Remarks
 When accumulate method is kAddStopOnOverflow, monitor the region
of photometry whether there is any data of overflow.
kAddStopOnOverflow method is effective only at the case of auto
exposure control. If the exposure state is otherwise (manual exposure,
 AE-lock), kAddStopOnOverflow method is same as kAddition mode.

CAM_SIA_GetAccumulateMode Get still capture accumulation
mode
void CAM_SIA_GetAccumulateMode (AccumulateMethodEx *pMode)

Gets the accumulate method.

Parameters
OUT pMode The accumulate method to acquire an still-image.

Return Values
 None

Remarks
 This function retrieves the conditions set by
CAM_SIA_SetAccumulateMode () function.

CAM_SIA_Start8Bit Start 8 bit grayscale still capture
BOOL CAM_SIA_Start8Bit (HANDLE *lphImage)

Starts the sequence which acquires the monochrome still-image of 8 bit
length.

Parameters
OUT lphImage Points to the buffer that receives the memory handle
 of captured still-image.
Return Values
 TRUE if successful
 FALSE otherwise

CAM_SIA_Start16Bit Start 16 bit grayscalestill capture
BOOL CAM_SIA_Start16Bit (HANDLE *lphImage)

Starts the sequence which acquires the monochrome still-image of 16 bit
length.

Parameters
OUT lphImage Points to the buffer that receives the memory handle
 of captured still-image.

Return Values
 TRUE if successful
 FALSE otherwise

CAM_SIA_Start24Bit Start 24 bit still capture
BOOL CAM_SIA_Start24Bit (HANDLE *lphImage)

Starts the sequence which acquires the still-image of 24 bit length.

Parameters
OUT lphImage Points to the buffer that receives the memory handle
 of captured still-image.
Return Values
 TRUE if successful
 FALSE otherwise

CAM_SIA_Start48Bit Start 48 bit still capture
BOOL CAM_SIA_Start48Bit (HANDLE *lphImage)

Starts the sequence which acquires the still-image of 48 bit length.

Parameters
OUT lphImage Points to the buffer that receives the memory handle
 of captured still-image.

Return Values
 TRUE if successful
 FALSE otherwise

CAM_SIA_Prep8Bit Prepare for 8 bit grayscale still capture
BOOL CAM_SIA_Prep8Bit (HANDLE *lphImage)

Prepares for the acquisition of a monochrome still-image of 8 bit
length.

Parameters
OUT lphImage Points to the buffer that receives the memory handle
 of captured still-image.
Return Values
 TRUE if successful
 FALSE otherwise

Remarks
 First phase of single or multi-capture sequence. Only needs to be
called once, followed by any number of Capture sequences.

CAM_SIA_Start16Bit Prepare for 16 bit grayscalestill
capture
BOOL CAM_SIA_Prep16Bit (HANDLE *lphImage)

Prepares for the acquisition of a monochrome still-image of 16 bit
length.

Parameters
OUT lphImage Points to the buffer that receives the memory handle
 of captured still-image.

Return Values
 TRUE if successful
 FALSE otherwise

Remarks
 First phase of single or multi-capture sequence. Only needs to be
called once, followed by any number of Capture sequences.

CAM_SIA_Start24Bit Prepare for 24 bit still capture
BOOL CAM_SIA_Prep24Bit (HANDLE *lphImage)

Prepares for the acquisition of a still-image of 24 bit length.

Parameters

OUT lphImage Points to the buffer that receives the memory handle
 of captured still-image.
Return Values
 TRUE if successful
 FALSE otherwise

Remarks
 First phase of single or multi-capture sequence. Only needs to be
called once, followed by any number of Capture sequences.

CAM_SIA_Start48Bit Prepare for 48 bit still capture
BOOL CAM_SIA_Prep48Bit (HANDLE *lphImage)

Prepares for the acquisition of a still-image of 48 bit length.

Parameters
OUT lphImage Points to the buffer that receives the memory handle
 of captured still-image.

Return Values
 TRUE if successful
 FALSE otherwise

Remarks
 First phase of single or multi-capture sequence. Only needs to be
called once, followed by any number of Capture sequences.

CAM_SIA_CaptureExpose Expose the still capture
void CAM_SIA_CaptureExpose (void)

Exposure phase of the acquisition of a still-image.

Parameters
 none
Return Values
 none

Remarks
 Exposure phase of single or multi-capture sequence. Sample may be
illuminated immediately prior to this function call and light source
darkened immediately afterward. CAM_SIA_PrepXXXX() must be called at
least once prior to any number of expose and capture sequences.

CAM_SIA_CaptureProcess Process the still capture
void CAM_SIA_CaptureProcess (void)

Process phase of the acquisition of a still-image.

Parameters
 none
Return Values
 none

Remarks

 Processes the exposed capture. CAM_SIA_CaptureExpose() may be
called again immediately afterward, to capture another image of the same
type, at the fastest possible framerate.

CAM_SIA_IsRunning Status of capture process
BOOL CAM_SIA_IsRunning (void)

Returns the status of image still capture processing.

Parameters
 None

Return Values
 TRUE if capturing or processing still capture
 FALSE otherwise

CAM_IMG_Save Save image to specified format
int CAM_IMG_Save(ImageFileTypeEx fileType, char* fullPathName, void*
 theImage)

Save image to specified type, with pathname

Parameters
IN fileType Specifies the accumulate method.
It can be any one of the following values.

Value Meaning

kImageFileTIFF - TIFF image format
kImageFileBMP - BMP image format

IN fullPathName - pathname of file to save to
IN theImage - the image bitmap (see Remarks)

Return Values
 Error code

Remarks
 This function can only be used within the context of the
WM_PIX_CAPTURE_DONE message sent by the SDK DLL after a still image
capture is completed. The test application function "OnCaptureDone()"
illustrates how to pass the image bitmap to this routine.

